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Abstract

With accelerated growth of Lager Language Model agents in e-commerce a novel adver-

sarial dynamic to digital markets emerges. This paper address the vulnerability of dynamic

pricing systems to AI intermediaries that decouple the information gather stages from the

transaction execution. By conducing reconnaissance isolates sessions, agents circumvent the

“Cost of Information” (COI) defined as the accumulated price premium typically thought de-

mand expression estimators. We formally define this phenomenon and derive the Cost of

Information Theorem, proving that as the saturation of independent, utility-maximizing agents

increases, the platform’s ability to sustain a COI converges to zero, rendering standard dynamic

pricing mechanisms incentive-incompatible. To respond to this threat we propose a defensive

framework which integrates behavioral economics with Adversarially Distributionally Robust

Optimization (DRO). We introduce a custom e-commerce research platform built on hybrid

Kappa-Lambda architecture, designed to capture and simulate high-fidelity controlled interac-

tion trajectories. We further demonstrate through modeling that human and agent behaviors

exhibit distinct transition probability kernels, enabling the construction of discriminative mod-

els based on Kullback-Leibler divergence. These behavioral signals serve as inputs for a

Distributionally Robust Reinforcement Learning (DR-RL) agent. We formulate the pricing

problem as a Stackelberg game where the learner optimizes against an ambiguity set of demand

distributions defined by the Wasserstein distance. This approach allows the pricing policy to

remain robust against non-stationary contamination without overfitting to deterministic demand

curves. The research validates a mechanism for preserving margin integrity and market equi-

librium in an agent-mediated economy, while minimizing degradation to the legitimate human

user experience (UX).

Keywords: Dynamic Pricing, LLM Agents, Adversarial Machine Learning, E-commerce, Behav-

ioral Detection, Reinforcement Learning
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1 Introduction

In this paper we present an exploration and defense against the presence of new commercial entities

in digitally powered platforms, preserving market equilibrium in the age of AI. This research

establishes the following contributions: definition and formalization of non-human transactors in

e-commerce platforms, development of a testing-ground for capturing the behavioral essence of

these transactors across a large variety of digital systems, construction of a discriminative model

(to prove separability) as a strong learner for downstream mitigation of contamination by non-

human entities, translation of such learned separability into existing dynamic pricing machine

learning loops, and finally establishment of a high-level KPI-affecting causal effect and cost-saving

framework for the future of internet commerce in the presence of such non-human learners.

This research effort touches a large variety of domains, spanning behavioral economics for un-

derstanding the rationality of behavior as theorized by the concept of homo economicus, agent-based

modeling to translate our learned separability into disjoint dynamic pricing systems, reinforcement

learning which serves as the SOTA for price-learners, and dynamic pricing and market equilib-

rium theory to understand the risks of possible supra-competitive pricing phenomena in cases of

adversarial pricing systems driving the market out of equilibrium.

1.1 Motivation and Market Context

The current innovation boom in generative artificial intelligence and its applications to knowledge-

based work tasks has brought many competing technologies for browser-use automation, with

benchmarks and evaluations (Xia et al., 2025) motivating the development of capabilities focused

on commercial research, understanding, and transaction execution (Xie et al., 2024). The “AI

Agent” market is forecasted to grow from around USD 5-8 billion in 2025 to USD 42-52 billion by

2030. This surge reflects adoption in e-commerce, customer service, and enterprise automation,

where agents handle interactions previously done by humans, raising the question of how these

systems should be designed for future robustness as well as how to maintain a competitive edge in
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the analytical components of e-commerce platforms (MarkNtel Advisors, 2025).

The key stakeholders affected by the threat of increasing agent-driven traffic include online

businesses and platform operators (especially in bot-heavy sectors like retail, travel, and financial

services), their security, fraud, and engineering teams, end users whose accounts and data are

exposed and whose experience degrades, regulators and legal stakeholders responding to breaches

and fraud, and the attackers or bot operators driving the automation (Imperva, 2025).

The industry has already seen legal action in cases like Amazon against Perplexity (Ghaffary

and Day, 2025), stemming from the difficulty of identifying traffic from hybrid systems like the

Commet browser. This paper explores such systems to better understand what the interaction data

looks like and what it means for dynamic pricing and recommendation systems downstream. This

observed impact indicates a need for prevention of secondary negative effects on the “legacy”

systems which power modern revenue sources for many companies. Dynamic pricing algorithms

rely on directly translating demand features 𝑞 to new price assignments 𝑝 across a catalogue of

products of size 𝑁 . This opens opportunities to design a tabula rasa of digital market mechanisms

that will shape the future of commerce in the age of artificial intelligence.

1.2 Solution Space Overview

Dynamic pricing systems, as presented by Mueller et al. (2019), often deal with sparse low-rank data

of demand signals which, combined with contamination from agents, creates complex interactions

that impact pricing. To further complicate the problem, certain commercial settings such as the one

presented by Amjad and Shah (2017) must address the true demand of products under censored

observations. This provides a formulation for handling demand in our case with multiple kinds of

commercial mediators: 𝑞 ← 𝑞𝐴 + 𝑞𝐻 where 𝑞𝐴 represents the distribution of demand generated by

agentic mediators and 𝑞𝐻 represents that of true human demand, these are two distinct populations

with divergent objective functions.

We formally define interaction data as coming from some actor which can either be an agent

(𝐴) or human (𝐻). For purposes of this research, an agent is an algorithmic loop with the ability



PHANTOM 4

Algorithm 1: AI Agent’s Interaction Loop
Input : Goal 𝐺, Platform URL 𝑢, LLMM
Output
:

Task completion result 𝑟

Initialize browser instance B with connection to 𝑢

Construct prompt 𝜋 ← BuildPrompt(𝐺, 𝑢)
done← False
while ¬done do

Observe current page state 𝑠𝑡 from B
QueryM with (𝜋, 𝑠𝑡) to determine next action 𝑎𝑡 ∈ {click, scroll, fill, navigate}
Execute 𝑎𝑡 on B to transition to state 𝑠𝑡+1
done←M .JudgeCompletion(𝐺, 𝑠𝑡+1)

Extract final result 𝑟 from terminal state
return 𝑟

to access a web platform and perform actions such as clicks, scrolls, and input field fills. The loop

terminates when the internal large language model judges the provided task definition as complete.

A detailed breakdown can be found in algorithm 1.

1.3 Research Questions

This work addresses three core research questions:

RQ1 Separability: Can agent and human sessions be reliably distinguished from behavioral inter-

action signals alone, without relying on network-level or device fingerprinting?

RQ2 Theoretical Impact: What is the formal relationship between agent contamination levels and

the erosion of pricing power in dynamic pricing systems?

RQ3 Robust Mitigation: How can pricing policies be constructed to maintain margin integrity

under unknown and non-stationary levels of agent contamination?

The previously described goal of separability allows us to formulate a task which entails taking

raw interaction data for either actor and creating a composite demand estimate 𝑞. We propose a

robust optimization objective defined in our methodology, transforming the pricing problem into

a form of Distributionally Robust Optimization (Kuhn et al., 2025) where the learner must guard
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against adversarial contamination in observed demand distributors. In this setting we must learn

to make decision that perform under the assumption of not having a single estimated probability

distribution but under an ambiguity set of any distribution, of which we have limited information.

In our case as stated is a mixture of distributions with a parameter which is unknown and non-

stationary.

2 Literature Review

To better understand all wedges of the current works, we must start by exploring the nature of

agents, agentic computer use and web automation, complementing that with economic reasoning

and strategic interaction. The final surface to cover, leads us to data-driven dynamic pricing under

uncertainty. The key technical risk is not “agents buying things” per se, but agents shaping the

behavioral and demand signals that downstream pricing systems consume and depend on. This

latter case of agents shopping is currently pending legal action in the case of Amazon.com Services

LLC v. Perplexity AI, Inc (2026) which is currently being treated as a violation of the Computer

Fraud and Abuse Act. The introduction of these mediating actor entities into economic systems,

is further creating a threat of false-name bidding (Yokoo et al., 2004), which prior research has

explored in a trading context. Other research on pseudonyms in dynamic systems, demonstrate

whitewashing in AI agents which can ignore defensive mechanisms by re-entry with different

identities (Feldman et al., 2004). Dynamic pricing assumes demand proxies are behaviorally

meaningful, while bot detection aims at security and access control. The missing bridge is a

principled framework for separating non-human reconnaissance from genuine human demand

expression and integrating that separation into pricing heuristics without degrading legitimate user

experience (in our research tracked by the user-experience index). This gap, is what our contribution

aims to address, particularly for the aforementioned stakeholder groups.
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2.1 Agent Taxonomy and Definitions

An agent in the context of artificial intelligence is generally defined by anything that can reason

and act upon observations of its environments (collected through some sensory inputs) and carry

out actions through effectors. Moreover, a rational agent is an entity that is capable of perceiving

the world around them and taking actions to advance specified goals. This definition by Russell

and Norvig (2021) is further developed in an economic context by Parkes and Wellman (2015),

suggesting AI research attempts to construct a synthetic homo economicus, which may also be

termed machina economicus. A specific class or taxon of this machina economicus, the Large

Language Model (LLM) agent, is defined as an autonomous system capable of achieving goals and

adapting post-training, often without needing explicit code or fundamental model changes (Xia

et al., 2025).

We must however acknowledge the current SOTA as presented by OSWORLD simulations by

Xie et al. (2024) have demonstrated that multi-modal tasks across desktop and web interaction

modes, have a top-performing score of only 12.24% success, whereas humans have a higher 72%

success rate; this is linked to the lack of grounding of these agents and their inability of handling

unexpected errors. This weakness matters for this research because it clarifies the near-term threat

model: practical exploitation does not require a fully competent “computer assistant”, only enough

automation to perform high-volume reconnaissance actions (search/filter/open product pages, probe

availability/price boundaries) that can contaminate behavioral signals. With the expected growth

of these capabilities, this threat only becomes more perilous to revenue management systems.

We model an agent session as producing some events with lower in-session conversion levels

relative to humans, this we state in our assumption that 𝑃(purchase|𝐴) < 𝑃(purchase|𝐻) but with

a potentially higher volatility in 𝑞, which we observe through the look-to-book metrics in our

simulation.
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2.2 Economic Agents: From Homo Economicus to Machina Economicus

Existing behavioral economic models tend to be criticized for the assumption of rational behavior,

as is embodied in the term of homo economicus. The definition of a machina economicus by Parkes

and Wellman (2015) is quite appropriate for our case, particularly because these assumptions of

rationality have been argued to be a very adequate reference for AI research by Varian (1995) due

to its expected utility maximizing nature. For modeling this behavior, the trajectories of these

agents can be formally defined to be partially observable Markov decision processes (Xie et al.,

2024). Agents are however not to be confused with web-bots which have previously been known as

automated software applications or scrapers which are set with a purpose of carrying out specific

tasks on the internet, without a higher level of internal judgement (Imperva, 2025). In our research,

we refer to this actor simply as an Agent belonging to the distribution 𝐴.

This economic framing also helps separate two related but distinct phenomena of agents as

buyers (changing market demand composition), and agents as information gatherers (changing the

observed interactions used by pricing/recommendation systems). The thesis focuses on the second,

where information acquisition strategically precedes purchase execution. We do not however

dismiss the proposed expectation that existing economic systems serving humans, will not be

populated by AIs across multiple channels and with various possibly misaligned goals as stated by

Parkes and Wellman (2015).

A HAP (HTTP Agent Profile) protocol has been developed as an internet draft by Dhir (2025)

in an effort to separate agentic and human internet traffic, however the majority adoption by both

the sellers and agent providers would be required for the implementation of such a solution.

2.3 Problem Evidence and Market Impact

The statistical issue of contamination in dynamic pricing systems that observe demand features

as a means to update prices has been documented in various previous contexts. The airline

industry (which has accounted for 24% of observed disruptions) has seen malicious activity with

a measureable impact on skewing key performance indicators by behavior visible in the look-
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to-book metrics. Excessive reconnaissance traffic inflates search volume without corresponding

completed bookings, thereby skewing demand forecasts and disrupting dynamic pricing models.

Demand proxies have also been observed to cause significant threat to inventory management by

creating artificial scarcity that distorts the demand-supply relationships in the enterprise model.

Censored demand as shown by Amjad and Shah (2017) can also be observed in low-bias demand

under-estimation caused by a distortion effect coming from non-human traffic data (Imperva, 2025).

When dynamic pricing algorithms operate on highly contaminated or noisy data, the risk

grows significantly in creating inaccurate price inferences. The emergent mitigation driven by

un-informed reward and regret signals might lead to price suppression for sales continuity which

results in harming margins and resulting in a revenue loss. System that poorly fit undesired behavior

might result in price gouging, which calls for strong guardrails while preserving targeted business

strategy (Mullapudi, 2025).

2.4 Theoretical Foundations: Economic Parallels

Early hints of exploration of prices in a standard English auction explored by Varian (1995) which

hints at exploration of prices in a sequential manner, which leads to a marginally different cost

to the bidder than the reservation price of the seller. This is a setting in which there is no cost

incured by the buyer for their actions or exploring prices in the market. They propose that any

agent responsable for the pricing of a good must be imune to dynamic strategies which might

extract private information from a market. A key take-away which relates to the Vickery auction

mechanism (also called a direct mechanism) suggests that not only would defenses against such

exploitation be necessary, but the construction of a mechanism in which revelation of the true

willingness to pay is the dominant strategy for commerce.

Like in classical revenue-maximizing auctions (Roughgarden, 2013) we assume that the human

actor in our system has a private valuation 𝑣 which we formally draw from intrinsically defined

distributions. The important note here is that the agent proxy does not have a mechanism to convey

this private information into the demand data which directly impacts the pricing systems.
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The key component of this mediation between agents and commercial platforms lays in the

transaction costs related to information gathering and negotiation. As proposed by Shahidi et al.

(2025) these costs are bound to collapse towards zero (which we demonstrate mathematically),

calling for a re-evaluation of the boundaries between firms and markets. As argued by Coase

(1937), the market participation and time associated with that participation, is critical part of the

Coasean transaction cost logic which includes the discovery or relevant pricing within a given

market. This process of price discovery without the presence of AI Agents can be time consuming

and resource intensive. To build on top of this work we provide a proof of optimal conditions

theorised by Coaes as an extension to AI-mediated markets.

2.5 Landscape of Existing Work

Explorations of the algorithmic collusion by LLMs (Fish et al., 2025) has demonstrated a cross-

model tendency of market division with a strong sensitivity to instructions provided in the “system

prompt”. If a dynamic pricing algorithm which is trained to respond to market signals learns to

coordinate with competitor agents (or become manipulated by those agents), the market equilibrium

is under threat of destabilization. This is particularly true for Q-learning pricing learners as

demonstrated by Calvano et al. (2018).

Our effort to combat contamination stems from research by Hardt et al. (2015) on strategic

classification, in conjunction with Liu et al. (2024) who demonstrate a linear regret if contamination

is ignored. The strategic classification adversarial effect comes from an effort to manipulate some

representative features used in a learning pipeline, which can result in lower prices on loans or

lower prices from dynamic pricing algorithms.

To bridge the gap between detection and robust pricing, we look at work in Distributionally

Robust Optimization (DRO). As defined by Kuhn et al. (2024), DRO provides a framework for

decision-making under ambiguity, where the true data distribution is unknown but lies within

a “Wasserstein ball” of a target distribution. In our context, the “ambiguity set” represents the

uncertainty introduced by agentic reconnaissance. By optimizing for the worst-case distribution
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within this set, pricing mechanisms can become resilient to the distributional shifts such as the ones

caused by non-human actors, effectively robustifying the revenue function against the contamination

described in our problem statement.

In order to create an environment in which prices can be tested against a demand estimate

generated by some behavioral model, we take inspiration from the architecture proposed by Ie et al.

(2019) in the RecSim platform built for recommendation systems. By modeling the distinct user

behavior as POMDPs we can generate faithful interactions which allow us to generalize, past the

constraint which is also present in recommendation systems, of rarely having enough experience

with individual actor’s interactions for good recommendations without generalization. The key

inspiration comes from the user choice modeling which we translate to a user transition model

for each distinct actor type (agent or human). We further consider the possibility of modeling

our quantitative research platform using dynamic Bayesian networks for the sake of tractability

within the system. The contribution or RecSim enables researchers to better understand learning

algorithms in fixed environments, a gap we identify as needing to be bridged within the space of

dynamic pricing.

We also acknowledge the difficulty in similarly affected fields such as authorship, where Ganie

(2025) demonstrate the theoretical limits of the distributional divergence between text authored

by a human or large language model. Their approach of computing the divergence between two

distributions demonstrates purely theoretically that no classifier can outperform random guessing

on their particular task. This is yet another factor to take into consideration when exploring the

potential mitigation strategies.

The setting of our work is quite complex and covers a wide range of topics, each with its own

set of issues that further complicate the task at hand. There is however promise in the field of

reinforcement learning and adversarial robustness to combat these problems. We can summarize

the characteristics learned from the review of our environment as: (i) non-stationary demand with

temporal noise 𝜖𝑡 (ii) contaminated behavioral signals from mixed human-agent traffic with un-

known mixing ratio 𝛼 (iii) partial observability where only demand proxies 𝑞 are available, not true
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demand 𝑑 (·) (iv) strategic actors capable of feature manipulation to influence pricing outcomes

(v) information asymmetry with private valuations 𝑣 drawn from unknown distributions (vi) ses-

sion-based interactions modeled as POMDPs with trajectories 𝜏𝑠 (vii) low conversion probability

for agents: 𝑃(purchase | 𝐴) < 𝑃(purchase | 𝐻) (viii) distributional uncertainty requiring robust

optimization within Wasserstein ambiguity sets (ix) potential for adversarial exploitation through

false-name bidding and identity whitewashing.
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A Terminology

Agent 𝐴 An actor of non-human nature, powered by an LLM.

Human 𝐻 An individual human with some job to be done.
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